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Abstract

This paper presents the results of the modeling and analysis of the catalyst layer of a PEM fuel cell cathode. We nondimensionalized
the governing equations and introduced three dimensionless parameters,πI , πK andπD, to simplify the description of the complicated
phenomena occurring in the catalyst layer. The three dimensionless parameters indicate the resistance to oxygen reduction, the resistance
to proton conduction, and the resistance to oxygen diffusion, respectively. The profiles of oxygen concentration, reaction rate, and current
density in the catalyst layer were investigated in terms ofπK andπD. It was found that the dimensionless overpotential across the catalyst
layer takes the form of̂ηcat = −ln πI −f(πK, πD). The functional relation off(πK, πD), which represents the mixture of ohmic overpotential
and concentration overpotential, was then evaluated for various combinations ofπK andπD, and finally two correlation equations forη̂cat

were proposed. The plot off(πK, πD) and the proposed correlation equations are helpful for analysis, prediction and optimization of the
performance of a PEM fuel cell.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The cathodic overpotential, which constitutes the largest
irreversible losses in the cell voltage, is influenced by sev-
eral physical and operating parameters such as the cell
current density, the active catalyst surface area, conduc-
tivities and thickness of the catalyst layer, the concen-
tration and diffusion coefficient of oxygen, and so on.
Mathematical models are a useful tool for analysis, pre-
diction and optimization of the performance of the fuel
cell cathode. Previous studies have offered many mod-
els for investigating the phenomena and overpotential
occurring in the catalyst layer of a fuel cell electrode.
The mathematical models devoted to the catalyst layer
of a fuel cell electrode include the pseudo-homogeneous
model [1–10], the single pore model[11], the thin film
model [12], and the agglomerate model[4,12]. They in-
corporate different degrees of complexity and applicability.
Among these models, the pseudo-homogeneous model is
the one most often used, mainly because it is straightfor-
ward and its outcome compares well with experimental
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results. The pseudo-homogeneous model assumes that
the catalyst layer has a uniform thickness and uniform
distribution of its various components, i.e. the sizes of
catalyst particles, ionomer, and gas pores are extremely
small and are uniformly distributed throughout the catalyst
layer.

The pseudo-homogeneous model has been adopted by
the following studies in regard to the PEM fuel cell cathode.
Bernardi and Verbruge[1,2] presented a complete model
for a gas diffusion cathode bonded to a polymer electrolyte.
They incorporated the electro-osmotic and pressure-driven
water transport consonant of the PEM fuel cell to investi-
gate the overpotential characteristics, water transport, and
catalyst utilization. Springer et al.[3] developed a model
considering, in detail, the voltage losses caused by inter-
facial kinetics at the Pt/ionomer interface, gas transport
and proton conduction limitations, and gas transport lim-
itations in the cathode backing. Broka and Ekdunge[4]
studied the discrepancies in polarization curves given by
the pseudo-homogeneous model and the agglomerate model
under various values of oxygen permeability, conductivities
and thickness of the catalyst layer. Marr and Li[7] used a
mathematical model to study the performance of the cath-
ode catalyst layer in a PEM fuel cell by including both
electrochemical reaction, and mass transport processes.
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The composition and performance optimization of catalyst
platinum has also been investigated.

All previous studies on the pseudo-homogeneous model
for the catalyst layer of a PEM fuel cell cathode have taken
into account all the parameters influencing the performance
of a fuel cell, and investigated their influences separately.
Owing to the fact that the number of influential parame-
ters is large, the analysis and optimization of a PEM fuel
cell cathode turn out to be very complicated. However, the
influential parameters can be organized into a lesser num-
ber of dimensionless groups, making the problem easier to
deal with. In the present study we nondimensionalized the
governing equations and boundary conditions, to reduce the
description of the complicated phenomena occurring in the
catalyst layer of a PEM fuel cell cathode to three dimension-
less parameters. The cathodic overpotential was evaluated
for various combinations of the dimensionless parameters,
and then the relationship between the cathodic overpotential
and the dimensionless parameters was obtained.

2. Model description

Fig. 1 presents a schematic of the cathode bonded to a
proton exchange membrane in a PEM fuel cell. The system
can be divided into three regions: a membrane region of
solid polymer electrolyte (PEM), an active catalyst region
(catalyst layer) that provides a catalytic site for the reduc-
tion of oxygen, and a diffusion region (gas diffusion layer)
composed of highly porous and conductive material.

The gas diffusion layer is located adjacent to the air/O2
flow channel and the current collector. Its open pores and
electronically conductive material transport O2 and electrons
to the catalyst layer, respectively. The PEM is an electronic
insulator, but an excellent conductor of protons. The pro-
tons produced at the anode go through the PEM to the cat-
alyst layer of the cathode, where they react with electrons
and O2 to form H2O. The catalyst layer is formed as a thin
layer of proton conductive ionomer (e.g. Nafion®), and a
carbon-supported catalyst (e.g. Pt/C). The ionomer portion

Fig. 1. Schematic of the cathode bonded to a proton exchange membrane
in a PEM fuel cell.

of the catalyst layer forms the transport avenue for protons,
and the matrix portion consisting of carbon and catalyst
plays the role of electronic conductor. Studies on the mi-
crostructure of the catalyst layer have shown the existence
of void space forming a network of gas channels that dom-
inate the transport of O2 to the active site[3,4,6].

In the present study we focus on the catalyst layer of the
cathode, which is in the region of 0< z < δc. In model-
ing this catalyst layer, the following assumptions have been
adopted.

• The fuel cell is operating under a steady state.
• The catalyst layer is isothermal.
• The distribution of oxygen concentration, current density,

and the overpotential in the catalyst layer is considered to
be one dimensional.

• The oxygen permeation through the PEM is negligible.
• The catalyst layer can be regarded as a pseudo-homoge-

neous film, so that the active surface area of catalysts,
void space and ionomer are uniformly distributed in it.

• The void space is sufficiently large so that the Knudsen
diffusion is negligible[8,13]. Besides, the convective mass
transfer of oxygen, driven by liquid water and water vapor,
is unimportant compared to the bulk diffusion.

• The electronic conductivity of Pt/C is substantially greater
than the protonic conductivity of ionomer[1,3,6,7].

The rate of the electrochemical reaction in the catalyst layer
can be described using the Butler–Volmer rate expression.
This is then simplified to give a Tafel-type equation in terms
of the oxygen concentration as

di

dz
= Avi0

CO2

C∗
O2

exp

(
−αcFη

RT

)
(1)

In Eq. (1), i is the local protonic current density,Av the
specific area of the active surface,i0 the reference exchange
current density,CO2 the local oxygen concentration,C∗

O2
the

reference oxygen concentration, which is associated with
i0, αc the cathodic transfer coefficient, andη is the local
cathodic overpotential.The local cathodic overpotentialη(z)

is related to the potential difference ofφs(z) andφm(z) by
the equation:

η(z) = [φs(z) − φm(z)] − φref (2)

whereφs is the potential of the electronically conductive
phase in the catalyst layer (i.e. the solid portion composed
of carbon and catalyst particles),φm the potential of the
ionomer phase, andφref the reference potential difference.
Both φs and φm increase in the positivez-direction, and
equations of Ohm’s law for each phase can be expressed as

dφs

dz
= 1

Keff
s

(I − i) (3)

dφm

dz
= 1

Keff
m

i (4)
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whereI is the operating cell current density,Keff
s andKeff

m
denote the effective conductivities of the solid portion and
the ionomer phase, respectively. Therefore, the gradient of
the overpotential in the catalyst layer is given by

dη

dz
= 1

Keff
s

I −
(

1

Keff
m

+ 1

Keff
s

)
i (5)

BecauseKeff
s is much greater thanKeff

m , Eq. (5) can be
reduced to

dη

dz
= − 1

Keff
m

i (6)

Note that the cathodic overpotentialη(z) and its first deriva-
tive dη/dz are both negative. Therefore,η(z) is a negative
and monotonically decreasing function.

One can relate the oxygen concentration with the protonic
current densityi in the catalyst layer by material balance.
On the assumption that both convective mass transfer and
Knudsen diffusion of oxygen are unimportant when com-
pared to bulk diffusion, Fick’s law completely describes the
mass flux of oxygen in the catalyst layer. Moreover, as oxy-
gen permeation through the PEM is negligible, the mass flux
of oxygen crossing any locationz∗ must be depleted in the
regionz∗ < z < δc. Hence the material balance for oxygen
gives

dCO2

dz
= − I − i

4FDeff
O2

(7)

whereDeff
O2

is the effective diffusion coefficient of oxygen

in the catalyst layer. BothKeff
m andDeff

O2
can be calculated

from their bulk properties and volume fractions using the
Bruggeman’s correction[8,14,15], i.e. Keff

m = Kmε
3/2
m

and Deff
O2

= DO2ε
3/2, where εm is the volume fraction

of ionomer, andε is the volume fraction of the open
pores.

There are three dependent variables,i, CO2, and η, in-
volved in three first-order differential equations,Eqs. (1), (6)
and (7). Adopting the oxygen concentration at the gas dif-
fusion layer/catalyst layer interface as the reference oxy-
gen concentration, the corresponding boundary conditions
are

i(δc) = I (8)

i(0) = 0 (9)

CO2(0) = C∗
O2

(10)

3. Solution technique

The governing equations and the corresponding boundary
conditions together pose a boundary-value problem. This
boundary-value problem can be reduced using the following
relations: ẑ = z/δc, î = i/I, Ĉ = CO2/C∗

O2
, η̂ = η/b,

whereb = RT/αcF is the Tafel-slope. By introducing three

dimensionless parameters,πI , πK, and πD, the governing
equations take the following form:

dî

dẑ
= Ĉ

πI
exp(−η̂) (11)

dη̂

dẑ
= −πK î (12)

dĈ

dẑ
= −πD(1 − î) (13)

The corresponding boundary conditions become

î(1) = 1 (14)

î(0) = 0 (15)

Ĉ(0) = 1 (16)

The threeπ’s are meaningful dimensionless parameters in
the characterization of the catalyst layer, and the solution
of this problem is determined by the threeπ’s. Definitions
and physical interpretations concerning the threeπ’s are as
follows.

πI indicates a generalized resistance to oxygen reduction,
which is expressed as the ratio of operating cell current
density to exchange current density (based on geometric
area), i.e.

πI = I

(Avi0)δc
∼ operating cell current density

exchange current density
(17)

πK represents a normalized resistance to proton conduction,
which is expressed as the ratio of the ohmic voltage drop
across the catalyst layer to the Tafel-slope, i.e.

πK = Iδc

Keff
m b

= I(δc/K
eff
m )

b
∼ ohmic voltage drop

Tafel-slope
(18)

andπD is a normalized resistance to oxygen diffusion, which
takes the form of the ratio of the oxygen consumption rate
to the diffusive oxygen transport rate at a concentration gra-
dient ofC∗

O2
/δc, i.e.

πD = Iδc

4FC∗
O2

Deff
O2

= I/4F

Deff
O2

(C∗
O2

/δc)
∼ oxygen consumption rate

diffusive oxygen transport rate
(19)

In order to understand this problem better, we shall not
solveEqs. (11)–(13)directly. The coupled system of three
first-order differential equations can be decoupled by differ-
entiatingEq. (11)with respect tôz, and substituting d̂η/dẑ,
dĈ/dẑ into the so-obtained equation with the right-hand side
of Eqs. (12) and (13), respectively. This then becomes

d2î

dẑ2
=

{
πD

î − 1

Ĉ
+ πK î

}
dî

dẑ
(20)
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Eq. (20)can then be transformed into two first-order differ-
ential equations by the introduction of an additional variable
îp, which stands for the dimensionless reaction rate. We now
write

dî

dẑ
= îp (21)

dîp

dẑ
=

{
πD

î − 1

Ĉ
+ πK î

}
îp (22)

Eqs. (13), (21) and (22)represent the three dependent vari-
ables:Ĉ, î, andîp. Once their values atẑ = 0 are designated,
the nonlinear first-order initial-value problem can be solved
to yield theĈ, î, and îp profiles using numerical methods
(e.g. the Runge–Kutta method). We already have the initial
values ofî(0) = 0 andĈ(0) = 1 from Eqs. (15) and (16).
However, the value of̂ip(0) must be chosen to ensure that the

Fig. 2. Influence ofπK andπD on the dimensionless spatial variation of (a) reaction rate, (b) current density, and (c) oxygen concentration.

solution profiles satisfyEq. (14). Consequently this results
in a shooting problem that can be resolved by the appropri-
ate shooting technique[16]. After obtaining the solutions to
the initial-value problem, the profiles of̂C and îp are then
substituted intoEq. (11)to yield the spatial variation of̂η.

4. Results and discussion

It is necessary to remark the facts that the dimension-
less parameterπI has been eliminated through the deriva-
tion of Eq. (20), which was then transformed intoEqs. (21)
and (22), andπI is not involved inEq. (13). Thus, the spa-
tial variation of the dimensionless reaction rateîp, protonic
current densitŷi, and oxygen concentration̂C, obtained by
solvingEqs. (13), (21) and (22), is independent ofπI . Their
solution profiles are determined only by bothπK and πD.
This interesting phenomenon signifies that, for a fixed set
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Table 1
Electrode properties and physical parameters for base-case conditions

Electrode property/physical parameter Values

Cell temperature,T (K) 353
Cell current density,I (A/cm2) 0.5
Cathodic transfer coefficient,αc 2.0
Reference exchange current density times area,

Avio (A/cm3)
5 × 10−4 [1]

Catalyst layer thickness,δc (cm) 0.001
Reference oxygen concentration,C∗

O2
(mol/cm3) 4.62 × 10−6 [1]

Effective protonic conductivity in catalyst
layer, Keff

m (S/cm)
0.002 [3]

Effective diffusion coefficient of oxygen in
catalyst layer,Deff

O2
(cm2/s)

2×10−4 [3]

of πK and πD values, decreasing the value ofπI (e.g. the
method of increasing the catalyst density) will not alter the
profiles of reaction ratêip, protonic current densitŷi, and
oxygen concentration̂C, but

∣∣η̂∣∣ will be decreased accord-
ing to Eq. (11). Fig. 2shows the influence ofπK andπD on
the spatial variation of̂ip, î, andĈ in the catalyst layer. The
base values ofπI , πK andπD are 1× 106, 16.43, and 1.402,
respectively, and they are evaluated from the base-case con-
ditions given inTable 1.

It can be seen that the oxygen concentration profile drops
rapidly (seeFig. 2c) as the value ofπD is increased to five
times its base value. A largeπD indicates low oxygen per-
meability, so the oxygen concentration is extremely low in
the right portion of the catalyst layer. Accordingly, the dis-
tribution of the reaction rate (seeFig. 2a) shifts to the left,
and no oxygen reduction occurs in the right portion. As the
value ofπD decreases to one-fifth of the base value the oxy-
gen will penetrate the catalyst layer more easily, thus the
oxygen concentration profile becomes more uniform and the
distribution of the reaction rate shifts to the right.

In contrast to the effect of changing the value ofπD, in-
creasing the value ofπK to five times its base value, the re-
action rate in the left portion decreases noticeably because
the resistance to proton conduction is increased. Instead of
shifting to the right-most boundary, the reaction rate peaks
aroundz = 0.8. This is due to the fact that the oxygen
diffusion is not high enough to provide a good penetration
through the catalyst layer, so most of the oxygen is con-
sumed somewhere off the catalyst layer/PEM interface. If
we reduce the value ofπK to one-fifth of the base value,
the resistance to proton conduction is lowered, hence, the
protons are transported to the left more easily, and the dis-
tribution of reaction rate tends to level off.

Inserting the solution profiles of̂C and îp into Eq. (11)
the spatial variation of the dimensionless overpotentialη̂ is
readily obtained.Fig. 3 gives the solution profiles for the
base value ofπI associated with the same five combinations
of πK andπD used inFig. 2. As pointed out above, when
referring toEq. (6), the solution profile of̂η is a negative,
monotonically decreasing function. Higher values ofπK and
πD indicate greater hindrance to the transport of proton and

Fig. 3. Spatial variation of dimensionless cathodic overpotential throughout
the catalyst layer for the same combinations ofπK andπD used inFig. 2.

oxygen, hence more voltage losses occur across the catalyst
layer. As can be seen, for a given value ofπI , increasing the
values ofπK andπD causes a greater overpotential across
the catalyst layer, and vice versa.

The main purpose of this study is to investigate the influ-
ence ofπI , πK andπD on the dimensionless overpotential
associated with the whole cathodic catalyst layer, which we
designate aŝηcat. As depicted inFig. 3, the local overpo-
tential varies throughout the catalyst layer. In this study we
take η̂cat = η̂(1) becausêη(1) is equal to the experimen-
tally measured dimensionless cathodic overpotential[3,6].
From Eq. (11) and the foregoing analysis, it is perceived
that the dimensionless overpotential associated with the ca-
thodic catalyst layer,̂ηcat, is governed byπI , Ĉ(1), andîp(1).
The latter two are in turn governed byπK andπD. We de-
duce that the relationship amongη̂cat, πI , πK andπD can be
expressed as

η̂cat = −ln πI − f(πK, πD) (23)

The influence ofπI on η̂cat can be decoupled fromπK,
πD and takes a logarithmic form, whereas the influence of
bothπK andπD are coupled together. The first term on the
right-hand side ofEq. (23)represents the activation overpo-
tential, and the second term stands for the mixture of ohmic
overpotential and concentration overpotential. The unknown
functionf(πK, πD) can be determined by evaluatingη̂cat for
a given value ofπI associated with various combinations of
πK andπD. Fig. 4 shows the curves off(πK, πD) for some
constant values ofπD with respect to the variation ofπK.
This figure presents the curves off(πK, πD) up to a func-
tion value of 60, which is equivalent to 0.913 V in the mix-
ture of ohmic overpotential and concentration overpotential
(base-case values,αc = 2.0, andT = 353 K, are applied).
This range is wide enough to cover the entire operating con-
ditions of a PEM fuel cell.
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Fig. 4. Mixture of ohmic and concentration overpotential as a function ofπK andπD.

As depicted inFig. 4, the function value off(πK, πD)

approaches zero as bothπK and πD approach zero. Thus,
Eq. (23) reduces toη̂cat = −ln πI under any one of
the following conditions: (i) the thickness of the catalyst
layer is extremely thin, (ii) the current density is ex-
tremely low, and (iii) both the effective conductivityKeff

m
and the effective diffusion coefficientDeff

O2
are extremely

high.
It can be seen fromFig. 4 that f(πK, πD) is an increas-

ing function ofπK andπD. In Fig. 4, one can see that the
curves forπD > 20 coincide with that ofπD = 20. The
reason for this lies in the limitation of resistance to oxygen
diffusion. With the value ofπD approaching 20, the oxygen
diffusion becomes very slow, and the oxygen concentration
profile drops abruptly to zero. Thus, the reduction of oxy-
gen takes place only within an extremely thin layer, or is
even restricted to the left-most boundary. When this hap-
pens, increasing the value ofπD will not further increase
the cathodic overpotential. On the other hand, the curves for
πD < 0.02 coincide with that ofπD = 0.02. This indicates
that, with the resistance to oxygen diffusion already being
very small,πK is the only controlling factor off(πK, πD).
Hence, furthering the diffusion capability of oxygen will not
lower the cathodic overpotential.

An empirical correlation can be developed for the func-
tional form off(πK, πD) utilizing the curves shown inFig. 4.
With πD being fixed and greater than 1.2, a linear relation-
ship between the function value andπK is observed. Also,
for πD being smaller than 0.8, a semi-logarithmic relation-
ship is found. The coefficients of correlation can be obtained

by regression analysis, and the following correlation equa-
tions are suggested:

f(πK, πD) =
(

1 − πD

−0.1216− 0.9635πD

)
πK, πD ≥ 1.2

(24)

Fig. 5. Fit of Eq. (24) to the calculated function values forπD ≥ 1.2.
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Fig. 6. Fit of Eq. (25) to the calculated function values forπD ≤ 0.8.

and

f(πK, πD) = (−0.65− 0.3πD + 2.2πD
2) + 1.025 lnπK,

πD ≤ 0.8 (25)

Figs. 5 and 6respectively show the fit of the correlation
equations to the calculated function values. As shown in
both these figures, the two correlation equations are in good
agreement with the calculated function values. The maximal
error in correlation, which occurs in the lowπK region, is
estimated to be 2.1 forEq. (24), and 0.65 forEq. (25). They
are respectively equivalent to 0.032 and 0.01 V in overpo-
tential when the base-case values of cell temperatureT and
transfer coefficientαc are applied.

5. Conclusions

A mathematical model for the catalyst layer of a PEM
fuel cell cathode has been developed, the formulated equa-
tions were nondimensionalized, and were then reduced to
a system of dimensionless differential equations associated
with three dimensionless parameters,πI , πK andπD. Here,
πI represents the resistance to oxygen reduction,πK the re-
sistance to proton conduction, andπD the resistance to oxy-

gen diffusion, hence they are responsible for the activation
overpotential, ohmic overpotential, and concentration over-
potential, respectively. This approach has simplified the pre-
sentation of complicated results relevant to the catalyst layer,
and offered a useful tool for the investigation into the PEM
fuel cell cathode.

The profiles of oxygen concentration, reaction rate, and
current density are governed only byπK andπD. They influ-
ence the cathodic overpotential through the spatial variations
of reaction rate, and oxygen concentration. The influence of
πI on η̂cat can be decoupled fromπK, πD and takes a loga-
rithmic form, whereas the influence of bothπK andπD are
coupled together. The dependence of the mixture of ohmic
overpotential and concentration overpotential onπK andπD
was depicted inFig. 4, which can be conveniently referred
to when assessing the performance of a PEM fuel cell.

Further more, an empirical correlation was developed us-
ing the results presented inFig. 4. This has yielded the fol-
lowing two correlation equations:

η̂cat = −ln πI +
(

1 − πD

0.1216+ 0.9635πD

)
πK, πD ≥ 1.2

(26)

η̂cat = −ln πI + (0.65+ 0.3πD − 2.2πD
2) − 1.025 lnπK,

πD ≤ 0.8 (27)

This correlation is considered to be helpful for the analysis,
prediction and optimization of the performance of a PEM
fuel cell.
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